
Algorithms for Weighted Sum of Squares Decomposition of
Non-negative Univariate Polynomials

Victor Magron

CNRS Verimag; 700 av Centrale 38401 Saint-Martin d’Hères, France

Mohab Safey El Din

Sorbonne Université, CNRS, Inria, Laboratoire d’Informatique de Paris 6, Équipe PolSys, France

Markus Schweighofer

Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany

Abstract

It is well-known that every non-negative univariate real polynomial can be written as the sum of
two polynomial squares with real coefficients. When one allows a (non-negatively) weighted sum
of finitely many squares instead of a sum of two squares, then one can choose all coefficients in
the representation to lie in the field generated by the coefficients of the polynomial. In particular,
this allows for an effective treatment of polynomials with rational coefficients.

In this article, we describe, analyze and compare, from both the theoretical and practical
points of view, two algorithms computing such a weighted sum of squares decomposition for
univariate polynomials with rational coefficients.

The first algorithm, due to the third author, relies on real root isolation, quadratic approxi-
mations of positive polynomials and square-free decomposition, but its complexity was not an-
alyzed. We provide bit complexity estimates, both on the runtime and the output size of this
algorithm. They are exponential in the degree of the input univariate polynomial and linear in
the maximum bitsize of its complexity. This analysis is obtained using quantifier elimination and
root isolation bounds.

The second algorithm, due to Chevillard, Harrison, Joldes and Lauter, relies on complex
root isolation and square-free decomposition, and was introduced for certifying positiveness of
polynomials in the context of computer arithmetic. Again, its complexity was not analyzed. We
provide bit complexity estimates, both on the runtime and the output size of this algorithm, which
are polynomial in the degree of the input polynomial and linear in the maximum bitsize of its
complexity. This analysis is obtained using Vieta’s formula and root isolation bounds.

Finally, we report on our implementations of both algorithms and compare them in prac-
tice on several application benchmarks. While the second algorithm is, as expected from the
complexity result, more efficient on most of examples, we exhibit families of non-negative poly-
nomials for which the first algorithm is better.

Keywords: Non-negative univariate polynomials, Nichtnegativstellensätze, sum of squares
decomposition, root isolation, real algebraic geometry.

Preprint submitted to Journal of Symbolic Computation May 26, 2018

1. Introduction

Given a subfield K of R and a non-negative univariate polynomial f ∈ K[X], we consider the
problem of proving the existence of, and computing, weighted sum of squares decompositions
of f with coefficients also lying in K, i.e., a1, . . . , ar ∈ K≥0 and g1, . . . , gr ∈ K[X] such that
f =

∑r
i=1 aig2

i .
Beyond the theoretical interest of this question, finding certificates of non-negative poly-

nomials is mandatory in many application fields. Among them, one can mention the stability
proofs of critical control systems often relying on Lyapunov functions ([33]), the certified eval-
uation of mathematical functions in the context of computer arithmetics (see for instance [5]),
the formal verification of real inequalities ([12]) within proof assistants such as Coq ([7]) or
Hol-light ([13]); in these situations the univariate case is already an important one. In particular,
formal proofs of polynomial non-negativity can be handled with weighted sum of squares cer-
tificates. These certificates are obtained with tools available outside of the proof assistants and
eventually verified inside. Because of the limited computing power available inside such proof
assistants, it is crucial to devise algorithms that produce certificates, whose checking is compu-
tationally reasonably simple. In particular, we would like to ensure that such algorithms output
weighted sum of squares certificates of moderate bitsize and ultimately with a computational
complexity being polynomial with respect to the input.

Related Works. Decomposing non-negative univariate polynomials into weighted sums of squares
has a long story; very early quantitative aspects like the number of needed squares have been
studied. For the case K = Q, Landau showed in [21] that for every non-negative polynomial
in Q[X], there exists a decomposition involving a weighted sum of (at most) eight polynomial
squares in Q[X]. In [31], Pourchet improves this result by showing the existence of a decompo-
sition involving only a weighted sum of (at most) five squares. This is done using approximation
and valuation theory; extracting an algorithm from these tools is not the subject of study of this
paper.

More recently, the use of semidefinite programming for computing weighted sum of squares
certificates of non-negativity for polynomials has become very popular since [22, 29]. Given a
polynomial f of degree n, this method consists in finding a real symmetric matrix G with non-
negative eigenvalues (a positive semidefinite matrix) such that f (x) = v(x)T Gv(x), where v is
the vector of monomials of degree less than n/2. Hence, this leads to the problem of solving
a so-called Linear Matrix Inequality, and one can rely on semidefinite programming (SDP) to
find the coefficients of G. This task can be delegated to an SDP solver (e.g., SeDuMi, SDPA,
SDPT3). An important technical issue arises from the fact that such SDP solvers are most of
the time implemented with floating-point double precision. More accurate solvers are available
(e.g., SDPA-GMP [28]). However, these solvers always compute numerical approximations of
the algebraic solution to the semidefinite program under consideration. Hence, they are not
sufficient to provide algebraic certificates of posivity with rational coefficients. Hence, a process
is needed to replace the computed numerical approximations of a sum of squares certificate by an
exact, weighted sum of squares certificate with all weights and coefficients rational. This issue

Email addresses: victor.magron@univ-grenoble-alpes.fr (Victor Magron), Mohab.Safey@lip6.fr
(Mohab Safey El Din), markus.schweighofer@uni-konstanz.de (Markus Schweighofer)

URL: http://www-verimag.imag.fr/~magron/ (Victor Magron), http://www-polsys.lip6.fr/~safey/
(Mohab Safey El Din), http://www.math.uni-konstanz.de/~schweigh/ (Markus Schweighofer)

2

was tackled in [30, 19]. The certification scheme described in [24] allows one to obtain lower
bounds of non-negative polynomials over compact sets. However, despite their efficiency, there
is no guarantee that these methods will output a rational solution to a Linear Matrix Inequality
when it exists (and especially when it is far from the computed numerical solution).

A more systematic treatment of this problem has been brought by the symbolic computation
community. Linear Matrix Inequalities can be solved as a decision problem over the reals with
polynomial constraints using the Cylindrical Algebraic Decomposition algorithm [6] or more
efficient critical point methods (see e.g., [1] for complexity estimates, and see [17, 10] for prac-
tical algorithms). But using such general algorithms is overkill, and, dedicated algorithms have
been designed for computing exact algebraic solutions to Linear Matrix Inequalities [14, 15].
Computing rational solutions can also be considered, thanks to convexity properties [34]. In
particular, the algorithm in [11] can be used to compute weighted sum of squares certificates
with rational coefficients for a non-negative univariate polynomial of degree n with coefficients
of bitsize bounded by τ using at most τO (1)2O (n3) boolean operations at (see [11, Theorem 1.1]).
In [3], the authors derive positivity certificates of polynomials positive over [−1, 1] in the Bern-
stein basis. This certificate allows one in turn to produce a Positivstellensatz identity of total
bitsize bounded by O (n4 log n + n4τ), thus polynomial in n and τ (see [3, Theorem 8]). To the
best of our knowledge, there is no available implementation of this method.

For the case where K is an arbitrary subfield of R, Schweighofer gives in [35] a new proof
of the existence of a decomposition involving a sum of (at most) n polynomial squares in K[X].
This existence proof comes together with a recursive algorithm to compute such decompositions.
At each recursive step, the algorithm performs real root isolation and quadratic approximations
of positive polynomials. Later on, a second algorithm is derived in [5, Section 5.2], where the
authors show the existence of a decomposition involving a sum of (at most) n + 3 polynomial
squares in K[X]. Note that this second algorithm was presented earlier in [18, Section 7] (albeit
with less detail and without a pointer to the code). This algorithm is based on approximating
complex roots of perturbed positive polynomials.

Neither of these latter algorithms were analyzed, despite the fact that they were implemented
and used. An outcome of this paper is a bit complexity analysis for both of them, showing that
they have better complexities than the algorithm in [11], the second algorithm being polynomial
in n and τ.

Notation for complexity estimates. For complexity estimates, we use the bit complexity model.
For an integer b ∈ Z\{0}, we denote by τ(b) := blog2(|b|)c+1 the bitsize of b, with the convention
τ(0) := 1. We write a given polynomial f ∈ Z[X] of degree n ∈ N as f =

∑n
i=0 biXi, with

b0, . . . , bn ∈ Z. In this case, we define ‖ f ‖∞ := max0≤i≤n |bi| and, using a slight abuse of notation,
we denote τ(‖ f ‖∞) by τ(f). Observe that when f has degree n, the bitsize necessary to encode f
is bounded by nτ(f) (when storing the coefficients of f). The derivative of f is f ′ =

∑n
i=1 ibiXi−1.

For a rational number q = b
c , with b ∈ Z, c ∈ Z\{0} and gcd(b, c) = 1, we denote max{τ(b), τ(c)}

by τ(q). For two mappings g, h : Nl → R>0, the expression “g(v) = O (h(v))” means that there
exists an integer b ∈ N and N ∈ N such that when all coordinates of v are greater than or equalled

to N, g(v) ≤ bh(v). The expression “g(v) =
∼

O (h(v))” means that there exists an integer c ∈ N
such that for all v ∈ Nl, g(v) = O(h(v)(log(h(v))c).

Contributions. We present and analyze two algorithms, denoted by univsos1 and univsos2,
allowing one to decompose a non-negative univariate polynomial f of degree n with coefficients
lying in any subfield K of R into a sum of squares. To the best of our knowledge, there was

3

no prior complexity estimate for the output of such certification algorithms based on sums of
squares in the univariate case. We summarize our contributions as follows:

• We describe in Section 3 the first algorithm, called univsos1 in the sequel. It was origi-
nally given in [35, Chapter 2]; Section 3 can be seen as a partial English translation of this
German text, since some proofs have been significantly simplified. In the same section,
we analyze its bit complexity. When the input is a polynomial of degree n with integer

coefficients of maximum bitsize τ, we prove that Algorithm univsos1 uses
∼

O ((n
2)

3n
2 τ)

boolean operations and returns polynomials of bitsize bounded by O ((n
2)

3n
2 τ). This is not

restrictive: when f ∈ Q[X], one can multiply it by the least common multiple of the
denominators of its coefficients and apply our statement for polynomials in Z[X].

• We describe in Section 4 the second algorithm, univsos2, initially given in [5, Sec-
tion 5.2]. We also analyze its bit complexity. When the input is a univariate polyno-
mial of degree n with integer coefficients of maximum bitsize τ, we prove that Algorithm
univsos2 returns a decomposition as the sum of n + 3 squares of polynomials with co-

efficients of bitsize bounded by O (n3 + n2τ) using
∼

O (n4 + n3τ) boolean operations. Thus,
Algorithm univsos2 outputs decompositions with total bitsize bounded by O (n4 + n3τ),
yielding (slightly) better complexity that the algorithm in [3].

• Both algorithms are implemented within the univsos tool. The first release of univsos
is a Maple library, is freely available1 and is integrated in the RAGlib (Real Algebraic
Library) Maple package2. The scalability of the library is evaluated in Section 5 on several
non-negative polynomials issued from the existing literature. Despite the significant differ-
ence of theoretical complexity between the two algorithms, numerical benchmarks indicate
that both may yield competitive performance w.r.t. specific subclasses of problems.

Acknowledgment. We are very grateful to the referees who helped to improve this article sig-
nificantly. The figure illustrating the proof of Proposition 11 is due to one of the referees.

2. Preliminaries

We first recall the proof of the following classical result for non-negative real-valued univari-
ate polynomials (see e.g., [32, Section 8.1]).

Theorem 1. Let f ∈ R[X] be a non-negative univariate polynomial, i.e., f (x) ≥ 0 for all x ∈ R.
Then f can be written as the sum of two polynomial squares in R[X].

Proof. Without loss of generality, one can assume that f is monic, i.e., the leading coefficient
(nonzero coefficient of highest degree) of f is 1. Then we decompose f as follows in C[x]:

f =
∏

j

(X − a j)r j
∏

k

((X − (bk + ick))(X − (bk − ick)))sk ,

1https://github.com/magronv/univsos
2http://www-polsys.lip6.fr/~safey/RAGLib/

4

with a j, bk, ck ∈ R, r j, sk ∈ N>0, a j standing for the real roots of f and bk ± ick standing for the
complex conjugate roots of f . Since f is non-negative, all real roots must have even multiplicity
r j, yielding the existence of polynomials g, q, r ∈ R[X] satisfying the following:

g2 =
∏

j

(X − a j)r j , q + ir =
∏

k

(X − (bk + ick))sk , q − ir =
∏

k

(X − (bk − ick))sk .

Then one has f = g2(q + ir)(q − ir) = g2(q2 + r2) = (gq)2 + (gr)2, which proves the claim.

Let K be a field and g ∈ K[X]. One says that g is a square-free polynomial when there is no
prime element p ∈ K[X] such that p2 divides g. Now let f ∈ K[X] \ {0}. A decomposition of f of
the form f = ag1

1g2
2 . . . g

n
n with a ∈ K and normalized pairwise coprime square-free polynomials

g1, g2, . . . , gn is called a square-free decomposition of f in K[X].
We recall the following useful classical bounds.

Lemma 2. [2, Corollary 10.12] If p ∈ Z[X] and q ∈ Z[X] divides p in Z[X], then one has
τ(q) ≤ deg q + τ(p) + τ(1 + deg p).

Yun’s algorithm [39] (also described in [8, Algorithm 14.21]) allows one to compute a square-
free decomposition of polynomials with coefficients in a field of characteristic 0.

Lemma 3. [8, § 14.23 & Table 8.7] Let f ∈ Z[X] of degree at most n and with coefficient bitsize
bounded from above by τ. Then the square-free decomposition of f using Yun’s Algorithm [39]

can be computed using an expected number of
∼

O (n2τ) boolean operations.

Lemma 4. [27, § 6.3.1] & [20, Lemma 9.26] Let K be a field of characteristic 0 and L a field
extension of K. The square-free decomposition in L[X] of any polynomial f ∈ K[X] \ {0} is the
same as the square-free decomposition of f in K[X]. Any polynomial f ∈ K[X] \ {0} which is a
square-free polynomial in K[X] is also square-free in L[X].

The following lemma allows one to obtain upper bounds on the magnitudes of the roots of a
univariate polynomial.

Lemma 5. (Cauchy Bound [4]) Let K be an ordered field. Let a0, . . . , an ∈ K with an , 0. Let
x ∈ K such that

∑n
i=0 aixi = 0. Then, one has:

|x| ≤ max
{

1,
|a0|

|an|
+ · · · +

|an−1|

|an|

}
.

For a polynomial with integer coefficients, one has the following:

Lemma 6. [27, Theorem 4.2 (ii)] Let f ∈ Z[X] of degree n, with coefficient bitsize bounded
from above by τ. If f (x) = 0 and x , 0, then 1

2τ+1 ≤ |x| ≤ 2τ + 1.

The real (resp. complex) roots of a polynomial can be approximated using root isolation
techniques. To compute the real roots one can use algorithms based on Uspensky’s method
relying on Descartes’ rule of signs, see e.g., [2, Chap. 10] for a general description of real root
isolation algorithms.

Lemma 7. [25, Theorem 5] Let f ∈ Z[X] with degree at most n with coefficient bitsize bounded
from above by τ. Isolating intervals (resp. disks) of radius less than 2−κ for all distinct real

(resp. complex) roots of f can be computed in
∼

O (n3 + n2τ + nκ) boolean operations, where κ is
an arbitrary positive integer.

5

Vieta’s formulas provide relations between the coefficients of a polynomial and signed sums
and products of the complex roots of this polynomial:

Lemma 8. (Vieta’s formulas [9]) Let K be an ordered field. Given a polynomial f =
∑

i=0n aiXi ∈

K[X] with an , 0 with (not necessarily distinct) complex roots z1, . . . , zn, one has for all j =

1, . . . , n: ∑
1≤i1<···<i j≤n

zi1 . . . zi j = (−1) j an− j

an
.

3. Nichtnegativstellensätze with quadratic approximations

3.1. A proof of the existence of weighted SOS decompositions in K[X]
Lemma 9. Let K be an ordered field. Let g = aX2 + bX + c ∈ K[X] with a, b, c ∈ K and a , 0.
Then g can be rewritten as g = a

(
X + b

2a

)2
+

(
c − b2

4a

)
. Moreover, when g is non-negative over K,

one has a > 0 and c − b2

4a ≥ 0.

Proof. The decomposition of g is straightforward. Assume that g is non-negative over K. Ob-
serve that c − b2

4a = g
(
− b

2a

)
; hence, since we assume that g is non-negative over K, we deduce

that c − b2

4a ≥ 0.
It remains to prove that a > 0, which we do by contradiction, assuming that a < 0. This

implies that for all x ∈ K, one has
(
x + b

2a

)2
≤ − 1

a

(
c − b2

4a

)
. Taking y = x + b

2a , there exists C ∈ K
such that y2 ≤ C, for each y ∈ K. This implies in particular for y = 2 that 4 ≤ C and for y = C
that C2 ≤ C, thus C ≤ 1. Finally, one obtains 4 ≤ C ≤ 1, yielding a contradiction.

Let f ∈ K[X] be a square-free polynomial that is non-negative over R. Then f is positive
over R; otherwise f would have at least one real root, implying that f would be neither a square-
free polynomial in R[X] nor a square-free polynomial in K[X], according to Lemma 4. We want
to find a polynomial g ∈ K[X] that fulfills the following conditions:

(i) deg g ≤ 2,
(ii) g is non-negative over R,

(iii) f − g is non-negative over R,
(iv) f − g has a root t ∈ K.

Assume that Property (i) holds. Then the existence of a weighted sum of squares decomposition
in K[X] for g is ensured from Property (ii). Property (iii) implies that h = f − g has only non-
negative values over R. The aim of Property (iv) is to ensure the existence of a root t ∈ K of
h, which is stronger than the existence of a real root. Note that the case where the degree of
h = f − g is less than the degree of f occurs only when deg f = 2. In this latter case, we can rely
on Lemma 9 to prove the existence of a weighted sum of squares decomposition.

Now, we investigate the properties of a polynomial g ∈ K[X] that fulfills conditions (i)-(iv).
Using Property (i) and Taylor Decomposition, we obtain g(X) = g(t) + g′(t)(X− t) + c(X− t)2. By
Property (iv), one has g(t) = f (t). In addition, Property (iii) yields f (x) − g(x) ≥ 0 = f (t) − g(t),
for all x ∈ K, which implies that (f − g)′(t) = 0 and g′(t) = f ′(t). By Property (ii), the quadratic
polynomial g(X + t) = f (t) + f ′(t)X + cX2 has at most one real root. This implies that the
discriminant of g(X + t), namely f ′(t)2 − 4c f (t), cannot be positive; thus one has c ≥ f ′(t)2

4 f (t) (since
f (t) > 0).

6

Finally, given a polynomial g satisfying (i)-(iii) and (iv), one necessarily has g = ft,c with
f ′(t)2

4 f (t) ≤ c ∈ K, and ft,c = f (t) + f ′(t)(X − t) + c(X − t)2.

In this case, one also has that the polynomial g = ft,c′ , with c′ =
f ′(t)2

4 f (t) , fulfills (i)-(iii) and (iv).
Indeed, (i) and (iv) trivially hold. Let us prove that (ii) holds: when deg ft,c′ = 0, g = f (t) ≥ 0,
and when deg ft,c′ = 2, g has a single root t − f ′(t)

2c′ , and the minimum of g is g
(
t − f ′(t)

2c′

)
= 0. The

inequalities ft,c′ ≤ ft,c ≤ f over R yield (iii).
Therefore, given f ∈ K[X] with f positive over R, we are looking for t ∈ K such that the

inequality f ≥ ft holds over R, with

ft := f (t) + f ′(t)(X − t) +
f ′(t)2

4 f (t)
(X − t)2 ∈ K[X] .

The main problem is to ensure that t lies in K. If we choose t to be a global minimizer of f ,
then ft would be the constant polynomial min{ f (x) | x ∈ R}. The idea is then to find t in the
neighborhood of a global minimizer of f . The following lemma shows that the inequality ft ≤ f
can always be satisfied for t in some neighborhood of a local minimizer of f .

Lemma 10. Let f ∈ R[X] and assume that f is positive over R. Let a be a local minimizer of f .
For all t ∈ R with f (t) , 0, let us define the polynomial ft:

ft := f (t) + f ′(t)(X − t) +
f ′(t)2

4 f (t)
(X − t)2 ∈ R[X] .

Then there exists a neighborhood U ⊂ R of a such that the inequality ft(x) ≤ f (x) holds for all
(x, t) ∈ U × U.

Proof. Set n := deg f . After adequate change of variable and scaling, it is easy to see that we can
suppose without loss of generality that a is the origin and that f (0) = 1. Because of the Taylor
formula

f =

n∑
k=0

f (k)(t)
k!

(X − t)k,

we have

f − ft =

n∑
k=2

f (k)(t)
k!

(X − t)k −
f ′(t)2

4 f (t)
(X − t)2 = (X − t)2

 n∑
k=2

f (k)(t)
k!

(X − t)k−2 −
f ′(t)2

4 f (t)


for all t ∈ R with f (t) , 0. Let h be the bivariate polynomial defined as follows:

h := f (T)

 n∑
k=2

f (k)(T)
k!

(X − T)k−2

 − 1
4

f ′(T)2 ∈ R[T, X].

Let us prove that (0, 0) is a local minimizer of h.
Since f (0) = 1, there exists c , 0, α ∈ N and g ∈ R[X] such that f − 1 = cXα + Xα+1g.

Therefore, limx→0
f (x)−1

cxα = 1. Since f − 1 is non-negative over R, one concludes that c > 0 and α
is even. Let us consider the lowest homogeneous part H of h, that is the sum of all monomials of
lowest degree involved in h. The lowest homogeneous part of f ′(T)2 is c2α2T 2α−2 with degree

7

2α − 2, while the lowest homogeneous part of
∑n

k=2
f (k)(T)

k! (X − T)k−2 is c
∑n

k=2

(
α
k

)
Tα−k(X − T)k−2

with degree α − 2 (where
(
α
k

)
= 0 for k > α). Then

H = c
n∑

k=2

(
α

k

)
Tα−k(X − T)k−2 ,

and thus

(X − T)2H = c((T + (X − T))α − Tα − αTα−1(X − T)) = c(Xα − αTα−1X + (α − 1)Tα).

We shall prove that H is positive except at (0, 0). Then it will be clear that lim‖(x,t)‖→0
h(x,t)
H(x,t)

exists. And since this limit obviously equals 1, we will conclude that (0, 0) is a local minimizer
of h.

Let us consider (x, t) ∈ R2 \ {(0, 0)} and show that H(x, t) > 0. If t = x, we have H(x, t) =

H(x, x) =
(
α
2

)
xα−2 > 0. If t , x, then it is enough to show that (x − t)2H(x, t) = c(xα − αtα−1x +

(α − 1)tα) > 0. This is clear if t = 0, since c > 0 and α is even. Now suppose that t , 0 and
define ξ := x

t , 1. Then one has t−α(x − t)2H(x, t) = c(ξα − αξ + α − 1) > 0, since the univariate
polynomial r := Xα − αX + α − 1 is positive except at 1, as r′ = αXα−1 − α. The positivity of H
implies that (0, 0) is a local minimizer of h.

Let us define q(X,T) := (X − T)2h. Combining the fact that (0, 0) is a local minimizer of the
two polynomials h, (X − T)2, and the fact that h(0, 0) = 1

2 f (0) f ′′(0) − 1
4 f ′(0)2 = 0, we conclude

that (0, 0) is also a local minimizer of q. Since f (x)− ft(x) = q(x, t)/ f (t), this yields the existence
of a neighborhood O ⊂ R2 of (0, 0) such that the inequality f − ft ≥ 0 holds for all (x, t) ∈ O.
Since there exists some neighborhood U ⊂ R of 0 such that the rectangle U × U is included in
O, this proves the initial claim.

Lemma 10 states the existence of a neighborhood U of a local minimizer of f such that the
inequality ft(x) ≤ f (x) holds for all (x, t) ∈ U ×U. Now, we show that with such a neighborhood
U of the smallest global minimizer a of f , there exists ε > 0 such that the inequality ft(x) ≤ f (x)
holds for all t ∈ (a − ε, a), and for all x ∈ R.

Proposition 11. Let f ∈ R[X] with deg f > 0. Assume that f is positive over R. Let a be the
smallest global minimizer of f . Then there exists a positive ε ∈ R such that for all t ∈ R with
a − ε < t < a, the quadratic polynomial ft, defined by

ft := f (t) + f ′(t)(X − t) +
f ′(t)2

4 f (t)
(X − t)2

=
f ′(t)2

4 f (t)

[
2 f (t)
f ′(t)

+ (X − t)
]2

∈ R[X] , (1)

satisfies ft ≤ f over R.

Proof. First, we handle the case when deg f = 2. Using Taylor Decomposition of f at t, one
obtains f = f (t) + f ′(t)(X − t) +

f ′′(t)
2 (X − t)2. Since f has no real root, the discriminant of f

is negative, namely f ′(t)2 − 4 f (t) f ′′(t)
2 < 0. This implies that f ′(t)2

4 f (t) < f ′′(t)2

2 , ensuring that the
inequality ft ≤ f holds over R, for all t ∈ R.

8

In the sequel, we assume that deg f > 2. We can find a neighborhood U as in Lemma 10
and without loss of generality, let us suppose that U = [a − ε0, a + ε0] for some positive ε0 small
enough so that f ′ has no real root in [a − ε0, a). Then the inequality ft(x) ≤ f (x) holds for all
x, t ∈ U. Next, we write f − ft =

∑n
i=0 ait xi, with ait ∈ R and n = deg f > 2 and define the

following function:

U → R : t 7→ Ct := max
{

1,
|a0t |

|ant |
+ · · · +

|a(n−1)t |

|ant |

}
.

Note that the Cauchy bound (Lemma 5) implies that for all t ∈ U, all real roots of f − ft lie in
[−Ct,Ct]. In addition, the closed interval domain U is compact, implying that the range values
of the function U → R : t 7→ Ct are bounded. Let C ∈ R with C ≥ Ct for all t ∈ U. Then, for
all t ∈ U, all real roots of f − ft lie in the interval [−C,C] and we can assume without loss of
generality that −C < a − ε0 < a < a + ε0 < C. Let us define M := min{ f (x) | x ∈ [−C, a − ε0]}.

Since a is the smallest global minimizer of f , f (a) < M. For all t ∈ [a − ε0, a), the quadratic
polynomial ft has one real root Nt := −2 f (t)

f ′(t) + t. When t ∈ [a − ε0, a) converges to a, f ′(t) < 0
converges towards 0 and −2 f (t) converges towards −2 f (a) < 0. Thus, the corresponding limit
of Nt is +∞. In addition, ft(−C) tends to fa(−C) = f (a) < M. Therefore, there exists some
ε ∈ (0, ε0] such that for all t ∈ (a − ε, a), one has Nt ∈ [C,∞) and ft(−C) < M. For all
t ∈ (a − ε, a), we partition R into five intervals and prove that the inequality ft ≤ f holds on each
interval (see the picture below):

• The inequality ft ≤ f holds over (−∞,−C]: this comes from the fact that ft(−C) < M ≤
f (−C) and the fact f − ft has no real root in (−∞,−C].

• The inequality ft ≤ f holds over (−C, a−ε0]: ft is monotonically decreasing over (−∞,Nt].
Since one has −C < a − ε0 < C ≤ Nt, ft is monotonically decreasing over (−C, a − ε0].
This implies that for all x ∈ (−C, a − ε0], one has ft(x) ≤ ft(−C) < M ≤ f (x).

• The inequality ft ≤ f holds over [a − ε0, a): it follows from the fact that [a − ε0, a) ⊆ U.

• The inequality ft ≤ f holds over [a,C): ft is monotonically decreasing over (−∞,Nt].
Since one has a < C ≤ Nt, ft is monotonically decreasing over [a,C). Since a is a global
minimizer of f and a ∈ U, one has ft(x) ≤ ft(a) ≤ f (a) ≤ f (x) for all x ∈ [a,C).

• The inequality ft ≤ f holds over [C,∞]: this claim is implied by the facts that ft(Nt) = 0 <
f (Nt) and Nt ∈ [C,∞], together with the fact that f − ft has no real root in [C,∞].

9

-�

6

?

y

x0
q

Nt

ft

ft
C−C

qq
a

q
a − ε0 a + ε0

q
t

q
a − ε1

q q

f f

f (a)
M

f (t)

Proposition 12. Let K be a subfield of R and f ∈ K[X] with deg f = n ≥ 1. Then f is non-
negative on R if and only if f is a weighted sum of n polynomial squares in K[X], i.e., there exist
a1, . . . , an ∈ K≥0 and g1, . . . , gn ∈ K[X] such that f =

∑n
i=1 aig2

i . (In fact, for n ≥ 4, n− 1 squares
suffice.)

Proof. The if part is straightforward. For the other direction, assume that f is non-negative on R,
whence n is even. The proof is by induction over n. The base case n = 2 follows from Lemma 9.
So assume n ≥ 4, and that the result has been established for polynomials of degree < n.

When f is not a square-free polynomial, we show that f is a weighted sum of n−2 polynomial
squares. We can write f = gh2, for some polynomials g, h ∈ K[X] with deg g ≤ n− 2. This gives
g(x) =

f (x)
h(x)2 ≥ 0 for all x ∈ R such that h(x) , 0. Since h has a finite number of real roots, g

is non-negative on R. Using the induction hypothesis, g is a weighted sum of n − 2 polynomial
squares. Therefore, f is also a weighted sum of n − 2 polynomial squares.

Next assume f is square-free in K[X] (and hence also square-free in R[X] by Lemma 4).
Thus, f is positive on R. Using Proposition 11, there exists some t ∈ K (K is dense in R) and a
quadratic polynomial ft ∈ K[X] such that the inequalities 0 ≤ ft(x) ≤ f (x) hold for all x ∈ R and
ft(t) = f (t). The polynomial f − ft has degree n, and takes only non-negative values. In addition,
(f − ft)(t) = 0, whence f − ft is not a square-free polynomial. Hence, we are in the above case,
implying that f − ft is a weighted sum of n− 2 polynomial squares. From (1) in Lemma 9, ft is a
weighted perfect square in K[X], implying that f is a weighted sum of n− 1 polynomial squares,
as required.

3.2. Algorithm univsos1

The smallest global minimizer a of f is a real root of f ′ ∈ K[X]. Therefore, by using root
isolation techniques [2, Chap. 10], one can isolate all the real roots of f ′ in non-overlapping
intervals with endpoints in K. Such techniques rely on applying successive bisections, so that
one can arbitrarily reduce the width of every interval and sort them w.r.t. their left endpoints.
Eventually, we apply this procedure to find a sequence of elements in K converging from below
to the smallest global minimizer of f in order to find a suitable t. We denote by parab(f) the

10

Input: non-negative polynomial f ∈ K[X] of degree n ≥ 2, with K a subfield of R
Output: pair of lists of polynomials (h list, q list) with coefficients in K

1: h list := [], q list := [].
2: while deg f > 2 do
3: (g, h) := sqrfree(f) . f = gh2

4: if deg h > 0 then h list := h list ∪ {h}, q list := q list ∪ {0}, f := g
5: else
6: ft := parab(f)
7: (g, h) := sqrfree(f − ft)
8: h list := h list ∪ {h}, q list := q list ∪ { ft}, f := g
9: end

10: done
11: h list := h list ∪ {0}, q list := q list ∪ { f }
12: return h list, q list

Figure 1: univsos1: algorithm to compute SOS decompositions of non-negative univariate polynomials.

corresponding procedure performing root isolation and returning the polynomial ft := f ′(t)2

4 f (t) (X −
t)2 + f ′(t)(X − t) + f (t) such that t ∈ K and f ≥ ft over R.

Algorithm univsos1, depicted in Figure 1, takes as input a polynomial f ∈ K[X] of even
degree n ≥ 2. The steps performed by this algorithm correspond to what is described in the proof
of Proposition 12 and rely on two auxiliary procedures. The first one is the procedure parab (see
Step 6). The second one is denoted by sqrfree and performs square-free decomposition: for
a given polynomial f ∈ K[X], sqrfree(f) returns two polynomials g and h in K[X] such that
f = gh2 and g is square-free. When f is square-free, the procedure returns g = f and h = 1 (in
this case deg h = 0). As in the proof of Proposition 12, this square-free decomposition procedure
is performed either on the input polynomial f (Step 3) or on the non-negative polynomial (f − ft)
(Step 7). The output of Algorithm univsos1 is a pair of lists of polynomials in K[X], allowing
one to retrieve an SOS decomposition of f . By Proposition 12 the length of all output lists,
denoted by r, is bounded by n/2. If we write hr, . . . , h1 for the polynomials belonging to h list,
and qr, . . . , q1 the positive definite quadratic polynomials belonging to q list, one obtains the
following Horner-like decomposition: f = h2

r
(
h2

r−1(h2
r−2(. . .) + qr−2) + qr−1

)
+ qr. Since each

positive definite quadratic polynomial qi is a weighted SOS polynomial, this yields a weighted
SOS decomposition for f .

Example 13. Let us consider the polynomial f := 1
16 X6 + X4 − 1

9 X3 − 11
10 X2 + 2

15 X + 2 ∈ Q[X].
We describe the different steps performed by Algorithm univsos1:

• The polynomial f is square-free, and the algorithm starts by providing the value t = −1
as an approximation of the smallest minimizer of f . With f (t) = 1397

720 and f ′(t) = −19
8 , one

obtains f−1 = 720
1397 (− 19

16 X + 271
360)2.

• Next, after obtaining the square-free decomposition f (X) − f−1 = (X + 1)2g, the same
procedure is applied on g. One obtains the value t = 1 as an approximation of the smallest
minimizer of g and g1 = 502920

237293 (− 1
18 X + 88411

167640)2.

• Eventually, one obtains the square-free decomposition g(X) − g1 = (X − 1)2h with h =
1

16 (X − 19108973
17085096).

11

Overall, Algorithm univsos1 provides the lists h list = [1, X + 1, 1, X − 1, 0] and q list =

[720
1397 (− 19

16 X + 271
360)2, 0, 502920

237293 (− 1
18 X + 88411

167640)2, 0, 1
16 (X− 19108973

17085096)], yielding the following weighted
SOS decomposition:

f = (X+1)2
[
(X−1)2

(1
16

(
X−

19108973
17085096

)2)
+

502920
237293

(
−

1
18

X+
88411
167640

)2]
+

720
1397

(
−

19
16

X+
271
360

)2
.

In the sequel, we analyze the complexity of Algorithm univsos1 in the particular case K =

Q. We provide bounds on the bitsize of related SOS decompositions as well as bounds on the
arithmetic cost required for computation and verification.

3.3. Bitsize of the output

Lemma 14. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n and τ an upper
bound on the bitsize of the coefficients of f . When applying Algorithm univsos1 to f , the sub-
procedure parab outputs a polynomial ft such that τ(t) = O (n2τ).

Proof. Let us consider the set S ⊆ Q defined by:

S := {t ∈ Q | ∀x ∈ R , ft(x) ≤ f (x) }

= {t ∈ Q | ∀x ∈ R , 4 f (t)2 + 4 f (t) f ′(t)(x − t) + f ′(t)2(x − t)2 ≤ 4 f (t) f (x) } .

The polynomial involved in S has degree 2n, with maximum bitsize of the coefficients bounded
from above by 2τ. Observe that the set S can be described by solving a quantifier elimination
problem involving a single quantified variable, and a single free variable. In addition, solv-
ing such a problem can be done with the Cylindrical Algebraic Decomposition algorithm (see
e.g., [2, Chap. 11]) which, here, reduces to performing subresultant computations with bivariate
polynomials as input. Using the complexity analysis of the Cylindrical Algebraic Decomposition
algorithm as done for [2, Algorithm 11.1], one shows that the set S can be described by poly-
nomials with maximum bitsize coefficients bounded from above by O (n2τ). Since t is a rational
root of one of these polynomials, the rational zero theorem [37] implies that τ(t) = O (n2τ).

Lemma 15. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n and τ an upper bound
on the bitsize of the coefficients of f . Let t and ft be as in Lemma 14. Let us write t = t1

t2
, with

t1 ∈ Z, t2 ∈ Z\{0}, t1 and t2 being coprime. Let f̂ (X) := t2n
2 f (t) f (X) and f̂t(X) := t2n

2 f (t) ft(X).
The polynomial ft has coefficients of bitsize bounded by O (n3τ). Moreover, there exists g ∈ Z[X]
such that f̂ − f̂t = (X − t)2g and τ(g) = O (n3τ).

Proof. One can write ft = M2(t)X2 + M1(t)X + M0(t) with

M2(t) :=
f ′(t)2

4 f (t)
,

M1(t) :=
2 f ′(t)(2 f (t) − t f ′(t))

4 f (t)
,

M0(t) :=
(2 f (t) − t f ′(t))2

4 f (t)
,

and ‖ ft‖∞ = max{M2(t), |M1(t)|,M0(t)}. One has 0 ≤ M0(t) = ft(0) ≤ f (0) ≤ ‖ f ‖∞.
12

In addition, 0 ≤ M0(t) + M1(t) + M2(t) = ft(1) ≤ f (1) ≤ (n + 1)‖ f ‖∞ and 0 ≤ M0(t)−M1(t) +

M2(t) = ft(−1) ≤ f (−1) ≤ (n + 1)‖ f ‖∞. Thus, one has M0(t) + |M1(t)| + M2(t) ≤ (n + 1)‖ f ‖∞,
which implies that ‖ ft‖∞ ≤ (n + 1)‖ f ‖∞.

By writing f (X) =
∑n

i=0 aiXi, one has t2n
2 f (t) =

∑n
i=0 aiti

1t2n−i
2 ≤ ‖ f ‖∞

∑n
i=0 |t1|

i|t2|2n−i. This
implies that τ(f̂) ≤ τ + τ(n + 1) + τ(t2n). By Lemma 14, one has τ(f̂) = O (n3τ).

The polynomials f̂ (X), f̂t(X) are polynomials in Z[X], and since ‖ f̂t‖∞ ≤ (n + 1)‖ f̂ ‖∞, the
triangle inequality ‖ f̂ − f̂t‖∞ ≤ ‖ f̂ ‖∞+‖ f̂t‖∞ ≤ (n+2)‖ f̂ ‖∞ implies that τ(f̂ − f̂t) ≤ τ(n+2)+τ(f̂) =

O (n3τ). In addition, the polynomial ft has coefficients of bitsize bounded by τ(f̂t) + τ(t2n
2 f (t)) =

O (n3τ).
As in the proof of Proposition 12, one has

(
f̂ − f̂t

)
(t) = 0, which allows one to write the

square-free decomposition of the polynomial f̂ − f̂t ∈ Z[X] as f̂ − f̂t = (X − t)2g, with g ∈ Z[X].
By Lemma 2, one has τ(g) ≤ n−2+τ(f̂ − f̂t)+ log2(n+1) ≤ n−2+2 log2(n+2)+τ(f̂) = O (n3τ),
which concludes the proof.

Theorem 16. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ an
upper bound on the bitsize of the coefficients of f . Then the maximum bitsize of the coefficients
involved in the SOS decomposition of f obtained with Algorithm univsos1 is bounded from
above by O ((k!)3τ) = O

((
n
2)

3n
2

)
τ
)
.

Proof. With k = n/2 and starting from the polynomial f , Algorithm univsos1 generates, in the
worst-case scenario, two sequences of polynomials fk, . . . , f1 ∈ Z[X], qk, . . . , q2 ∈ Z[X], as well
as rational numbers tk, . . . , t2 ∈ Q such that fk = f , ti = ti1

ti2
, with ti1 ∈ Z, ti2 ∈ Z\{0} and

t4i
i2 fi(ti) fi − qi = (X − ti)2 fi−1 , i = 2, . . . , k . (2)

From Lemma 15, for all i = 2, . . . , k, one has τ(fi−1) = O (i3τ(fi)). This yields τ(f1) =

O
(
(k!)3τ(f)

)
.

Using Stirling’s formula, we obtain k! ≤ 2
√

2πk
(k

e
)k and (k!)3 ≤ 16

√
2π

3
2 k

3
2
(k

e
)3k, where e

denotes the Euler number. Since k ≤ ek for each integer k ≥ 1 and 3
2 < 3, one has (k!)3 ∈ O (k3k),

yielding τ(fi) = O ((n
2)

3n
2 τ), for all i = 1, . . . , k. Similarly, we obtain τ(qi) = O ((n

2)
3n
2 τ), for all

i = 1, . . . , k. Finally, using Lemma 14, one has τ(ti) = O (i2τ(fi)), yielding the desired result.

3.4. Bit complexity analysis

Theorem 17. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ an upper
bound on the bitsize of the coefficients of f . Then, on input f , Algorithm univsos1 runs in

∼

O (k3 · (k!)3τ) =
∼

O

((n
2

) 3n
2
τ

)
boolean operations.

Proof. For i = 2, . . . , k we obtain each polynomial fi−1 as in the proof of Theorem 16 by
computing the square-free decomposition of the polynomial t4i

i2 fi(ti) fi − qi. As in the proof of
Theorem 16, one has τ(fi−1) = O (i3τ(fi)). Hence, this follows by Lemma 3 that the poly-

nomial fi−1 can be computed using an expected number of
∼

O (i2 · i3τ(fi)) boolean operations.
The number of boolean operations to compute all polynomials f1, . . . , fk−1 is thus bounded by
∼

O
(
k2 · k3τ + (k − 1)2(k − 1)3k3τ + · · · + 22(k!)3τ

)
=
∼

O
(∑k

i=2

(
i2

∏k
j=i j3

)
τ
)
.

13

For each i = 2, . . . , k, the bitsize of ti is bounded from above by O (i2τ(fi)). Therefore, ti
can be computed by approximating the roots of f ′i with isolating intervals of radius less than

2−i2τ(fi). By Lemma 7, the corresponding computation cost is
∼

O (i3τ(fi)) boolean operations. The
number of boolean operations to compute all rational numbers t2, . . . , tk is bounded from above

by
∼

O
(
k3 · k3τ + (k − 1)3(k − 1)3k3τ(f) + · · · + 23(k!)3τ

)
=
∼

O
(∑k

i=2

(
i3

∏k
j=i j3

)
τ
)
.

In addition, one has

k∑
i=2

(
i3

k∏
j=i

j3
)

= (k!)3
k∑

i=2

1
((i − 1)!)3 < (k!)3

∞∑
i=1

1
i!

= (k!)3(e1 − 1) < 2(k!)3 .

Using Stirling’s formula, we obtain 2(k!)3 ≤ 32
√

2π
3
2 k

3
2
(k

e
)3k. As in the proof of Theorem 16,

we obtain the announced complexity.

For a given polynomial f of degree 2k, one can check the correctness of the SOS decompo-
sition obtained with Algorithm univsos1 by evaluating this SOS polynomial at 2k + 1 distinct
points and compare the results with the ones obtained while evaluating f at the same points.

Theorem 18. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ an
upper bound on the bitsize of the coefficients of f . Then one can check the correctness of the SOS
decomposition of f obtained with Algorithm univsos1 within

∼

O (k · (k!)3τ) =
∼

O

((n
2

)
3n
2

)
τ
)

boolean operations.

Proof. From [8, Corollary 8.27], the cost of multiplying two polynomials in Z[X] of degree

less than n = 2k with coefficients of bitsize less than B is bounded by
∼

O (k · B). By Theo-
rem 16, the maximal bitsize of the coefficients of the SOS decomposition of f obtained with
Algorithm univsos1 is bounded from above by B = O ((k!)3τ). Let us consider 2k + 1 distinct
integers (e.g., all integers between 0 and n), with maximal bitsize bounded from above by log2 n.
Therefore, from [8, Corollary 10.8], the cost of the evaluation of this decomposition at the 2k + 1

points can be performed using at most
∼

O (k · (k!)3τ) boolean operations, the desired result.

Remark 19. Let fk = f ∈ Z[X]. Under the strong assumption that each polynomial fk, . . . , f1
involved in Algorithm univsos1 has at least one integer global minimizer, Algorithm univsos1

has polynomial complexity. Indeed, in this case, qi = fi(ti), τ(ti) = O (τ(fi)) and τ(fi−1) =

O (2(i − 1) + τ(fi)), for all i = 2, . . . , k. Hence, the maximal bitsize of the coefficients involved in
the SOS decomposition of f is bounded from above by O (k2 + τ), and this decomposition can be

computed using an expected number of
∼

O (k4 + k3τ) boolean operations.

4. Nichtnegativstellensätze with perturbed polynomials

Here, we recall the algorithm given in [5, Section 5.2]. The description of this algorithm,
denoted by univsos2, is given in Figure 2.

14

Input: non-negative polynomial f ∈ K[X] of degree n ≥ 2, with K a subfield of R, ε ∈ K such
that 0 < ε < fn, precision δ ∈ N for complex root isolation

Output: list c list of numbers in K and list s list of polynomials in K[X]
1: (p, h) := sqrfree(f) . f = p h2

2: n′ := deg p, k := n′/2
3: pε := p − ε

∑k
i=0 X2i

4: while has real roots(pε) do
5: ε := ε

2 , pε := p − ε
∑k

i=0 X2i

6: done
7: ε := ε

2
8: (s1, s2) := sum two squares(pε, δ)
9: ` := fn, u := pε − `s2

1 − `s2
2, u−1 := 0, u2k+1 := 0 . u =

∑2k−1
i=0 uiXi

10: while ε < max0≤i≤k
{ |u2i+1 |

4 − u2i + |u2i−1|
}

do
11: δ := 2δ, (s1, s2) := sum two squares(pε, δ), u := pε − `s2

1 − `s2
2

12: done
13: c list := [`, `], s list := [h s1, h s2]
14: for i = 0 to k − 1 do
15: c list := c list ∪ {|u2i+1|}, s list := s list ∪ {h (Xi+1 +

sgn (u2i+1)
2 Xi)}

16: c list := c list ∪ {ε − |u2i+1 |

4 + u2i − |u2i−1|}, s list := s list ∪ {h Xi}

17: done
18: return c list ∪ {ε + un − |un−1|}, s list ∪ {h Xk}

Figure 2: univsos2: algorithm to compute SOS decompositions of non-negative univariate polynomials.

4.1. Algorithm univsos2

Given a subfield K of R and a non-negative polynomial f =
∑n

i=0 fi Xi ∈ K[X] of degree
n = 2k, one first obtains the square-free decomposition of f , yielding f = p h2 with p > 0 on
R (see Step 1 of Figure 2).Then the idea is to find a positive number ε > 0 in K such that the
perturbed polynomial pε(X) := p(X) − ε

∑k
i=0 X2i is also positive on R (see [5, Section 5.2.2] for

more details). This number is computed thanks to the loop going from Step 4 to Step 6, and relies
on the auxiliary procedure has real roots, which checks whether the polynomial pε has real
roots using root isolation techniques. As mentioned in [5, Section 5.2.2], the number ε is divided
by 2 again to allow a margin of safety (Step 7).

Note that one can always ensure that the leading coefficient ` := pn of p is the same as the
leading coefficient fn of the input polynomial f .

We obtain an approximate weighted rational sum of two polynomial squares decomposition
of the polynomial pε with the auxiliary procedure sum two squares (Step 8), relying on an
arbitrary precision complex root finder. Recalling Theorem 1, this implies that the polynomial
p can be approximated as closely as desired by a weighted sum of two polynomial squares in
Q[X], that is `s2

1 + `s2
2.

Thus there exists a remainder polynomial u := pε − `s2
1 − `s2

2 with coefficients of arbitrar-
ily small magnitude (as mentioned in [5, Section 5.2.3]). The magnitude of the coefficients
converges to 0 as the precision δ of the complex root finder goes to infinity. The precision is
increased thanks to the loop going from Step 10 to Step 12 until a condition between the coef-
ficients of u and ε becomes true, ensuring that ε

∑k
i=0 X2i + u(X) also admits a weighted SOS

decomposition. For more details, see [5, Section 5.2.4].

15

The reason why Algorithm univsos2 terminates is the following: at first, one can always
find a sufficiently small perturbation ε such that the perturbed polynomial pε remains positive.
Next, one can always find sufficiently precise approximations of the complex roots of pε ensur-
ing that the error between the initial polynomial p and the approximate SOS decomposition is
compensated, thanks to the perturbation term.

The outputs of Algorithm univsos2 are a list of numbers in K and a list of polynomials in
K[X], allowing one to retrieve a weighted SOS decomposition of f . The size r of both lists is
equal to 2k + 3 = n′ + 3 ≤ n + 3. If we write cr, . . . , c1 for the numbers belonging to c list and
sr, . . . , s1 for the polynomials belonging to s list, one obtains the following SOS decomposi-
tion: f = cr s2

r + · · · + c1s2
1.

Example 20. Let us consider the same polynomial f := 1
16 X6 +X4− 1

9 X3− 11
10 X2 + 2

15 X+2 ∈ Q[X]
as in Example 13. We describe the different steps performed by Algorithm univsos2:

• The polynomial f is square-free, so we obtain p = f (Step 1). After performing the loop
from Step 4 to Step 6, Algorithm univsos2 provides the value ε = 1

32 at Step 7 as well as
the polynomial pε := p − 1

32 (1 + X2 + X4 + X6), which has no real root.

• Next, after increasing three times the precision in the loop going from Step 10 to Step 12, the
result of the approximate root computation yields s1 = X3 − 69

8 X and s2 = 7X2 − 1
4 X − 63

8 .

Applying Algorithm univsos2, we obtain the following two lists of size 6 + 3 = 9:

c list =

[1
32
,

1
32
,

913
15360

,
731

92160
,

7
1152

,
1
32
,

79
7680

,
1

576
, 0

]
,

s list =

[
X3 −

69
8

X, 7X2 −
1
4

X −
63
8
, 1, X, X2, X3, X +

1
2
, X(X −

1
2

), X2(X +
1
2

)
]
,

yielding the following weighted SOS decomposition:

f =
1

32

(
X3 −

69
8

X
)2

+
1
32

(
7X2 −

1
4

X −
63
8

)2
+

913
15360

+
731

92160
X2

+
7

1152
X4 +

1
32

X6 +
79

7680

(
X +

1
2

)2
+

1
576

X2
(
X −

1
2

)2
.

4.2. Bitsize of the output

First, we need the following auxiliary result:

Lemma 21. Let p ∈ Z[X] be a positive polynomial over R, with deg p = n and τ an upper bound
on the bitsize of the coefficients of p. Then, one has

inf
x∈R

p(x) > (n2τ)−n+22−n log2 n−nτ .

Proof. Denoting by τ′ the maximum bitsize of the coefficients of p′ and picking an α such that
p(α) = infx∈R p(x) (i.e., a global minimizer of p), Q with p and A with p′ in the third item of [26,
Lemma 3.2], one obtains

inf
x∈R

p(x) > (n2τ)−n+22−nτ′ .

Now note that τ′ ≤ log2 n + τ. Using this inequality in the one above concludes the proof.
16

Lemma 22. Let p ∈ Z[X] be a positive polynomial over R, with deg p = n = 2k and let τ
be an upper bound on the bitsize of the coefficients of p. Then there exists a positive integer
N = O (n log2 n + nτ) such that for all N′ ≥ N the following holds. For ε(N′) := 1

2N′ , the
polynomial pε(N′) := p − ε(N′)

∑k
i=0 X2i is positive over R.

Proof. Let us first consider the polynomial r := p− L
2
∑k

i=0 X2i, where L is the leading coefficient
of p. Using Lemma 6, the absolute value of each real root of the polynomial 2r is bounded by
2τ(2r) + 1 ≤ 2τ+1. By defining R := 2τ+1, it follows that r is positive for |x| > R. In addition, for
all positive N ∈ N \ {0} and ε(N) = 1

2N , one has ε(N) ≤ 1
2 ≤

L
2 and pε(N) = p − ε(N)

∑k
i=0 X2i ≥

p − L
2
∑k

i=0 X2i = r, which implies that pε(N) is also positive for |x| > R. Observe also that for all
N′ ≥ N, pε(N′) is also positive for |x| > R.

Since R = 2τ+1 > 1, one has 1 + R2 + R4 + · · ·+ Rn < nRn. Let us choose the smallest positive
integer N such that nRn ≤ 2N inf |x|≤R p. This implies that ε(N) < inf |x|≤R p

1+R2+R4+···+Rn , which ensures
that the polynomial pε is also positive for all |x| ≤ R. Note also that for all N′ ≥ N, pε(N′) is also
positive for all |x| ≤ R since ε(N′) ≤ ε(N). .

Now, applying Lemma 21, we obtain the following upper bound:

2N ≤ nRn(n2τ)n−22n log2 n+nτ = n2n(τ+1)(n2τ)n−22n log2 n+nτ.

We straightforwardly deduce that N = O (n log2 n + nτ).

In the sequel, we denote by z1, . . . , zn the (not necessarily distinct) complex roots of the
polynomial pε. Assuming that we approximate each complex root with a relative precision of δ,
we shall say that ẑ1, . . . , ẑn are approximations to the roots of pε if we can write ẑi = zi(1 + ei),
with |ei| ≤ 2−δ, for all i = 1, . . . , n.

Theorem 23. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n and τ an upper
bound on the bitsize of the coefficients of f . Then the maximal bitsize of the weights and coef-
ficients involved in the weighted SOS decomposition of f obtained with Algorithm univsos2 is
bounded from above by O (n3 + n2τ).

Proof. Let p be the square-free part of the polynomial f (see Step 1 of Algorithm univsos2).
Then by using Lemma 2, one has τ(p) ≤ n + τ + log2(n + 1) = O (n + τ).

Let ε = 1
2N be as in Lemma 22, so that the polynomial pε = p − ε

∑k
i=0 X2i is positive over R.

By Lemma 22, one can take N = C(n2 + nτ) for any large enough constant C > 1. Let us write
pε =

∑n
i=0 aiXi with an = ` and prove that a precision of δ := N + log2(5n‖p‖∞) = C(n2 + nτ) +

log2(5nτ) is large enough to ensure that the coefficients of u satisfy ε ≥ |u2i+1 |

4 − u2i + |u2i−1|, for
all i = 0, . . . , k. First, note that e := 2−δ < 1

δ
< 1

Cn(n+τ) <
1

n(n+1) holds. By using Vieta’s formulas
provided in Lemma 8, one has for all j = 1, . . . , n:∑

1≤i1<···<i j≤n

zi1 · · · zi j = (−1) j an− j

`
.

Then one has for all j = 1, . . . , n:

un− j = `
∑

1≤i1<···<i j≤n

(zi1 · · · zi j − ẑi1 · · · ẑi j) = `
∑

1≤i1<···<i j≤n

zi1 · · · zi j

(
1 − (1 + ei1) · · · (1 + ei j)

)
.

17

Since e < 1
n , one can apply [16, Lemma 3.3], which yields

∏
1≤i1<···<i j≤n(1 + ei j) ≤ 1 + θ j, with

|θ j| ≤
je

1− je . In addition, one has (j + 1)e − je
1− je =

e(1− j(j+1)e)
1− je ≥ 0 since e < 1

n(n+1) ≤
1

j(j+1) , for all
j = 1, . . . , n. Hence, one has |un− j| ≤ |an− j|(j + 1)e ≤ e‖pε‖∞(j + 1), for all j = 1, . . . , n.

This implies that for all i = 0, . . . , k:

|u2i+1|

4
− u2i + |u2i−1| ≤ e‖pε‖∞

(n − 2i
4

+ (n − (2i − 1)) + (n − (2i − 2)
)
≤ 5ne‖pε‖∞ ≤ 5ne‖p‖∞ .

Since δ = N + log2(5n‖p‖∞), one has 5ne‖p‖∞ = ε. Thus, for all i = 0, . . . , k, ε ≥ |u2i+1 |

4 −

u2i + |u2i−1| holds with δ = O (n2 + nτ + log2 n + n + τ) = O (n2 + nτ).
Choosing e j = e = 2−δ and ẑ j = z j(1 + 2−δ) yields |un− j| = |an− j||1 − (1 + 2−δ) j|, for all

j = 1, . . . , n. Next, we bound the size of the weighted SOS decomposition. One has τ(δ) =

O (n2 + nτ), and for all i = 1, . . . , n, τ(an−i) ≤ τ(ε) = O (n2 + nτ). Therefore, for all j = 1, . . . , n,
τ(un− j) ≤ O (n2 + nτ + j(n2 + nτ)) and the maximal bitsize of the coefficients of u is bounded by
O (n3 + n2τ).

From Lemma 6, one has |ẑ j| = |z j|(1 + 2−δ) ≥ 1
2τ(pε)+1 (1 + 2−δ) ≥ 1

2τ(pε)+δ+1 , so that it is
enough to perform root isolation for the polynomial pε with a precision bounded from above
by O (τ(pε) + δ) = O (n2 + nτ).

Finally, the weighted SOS decomposition of f has weights and coefficients of maximal bitsize
bounded by O (n3 + n2τ), as claimed.

4.3. Bit complexity analysis

Theorem 24. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ an
upper bound on the bitsize of the coefficients of f . Then, on input f , Algorithm univsos2 runs

in
∼

O (n4 + n3τ) boolean operations.

Proof. By Lemma 3, the square-free decomposition of f can be computed using an expected

number of
∼

O (n2τ) boolean operations. Checking that the polynomial pε has no real root can be

performed using an expected number of
∼

O (n2 · τ(ε)) =
∼

O (n3τ) boolean operations while relying
on Sylvester-Habicht Sequences [23, Corollary 5.2].

As seen in the proof of Theorem 23, the complex roots of pε must be approximated with iso-
lating intervals (resp. disks) of radius less than 2−τ(pε)−δ. Thus, by Lemma 7, all real (resp. com-

plex) roots of pε can be computed in
∼

O (n3 + n2τ(pε) + n(δ + τ(pε)) =
∼

O (n4 + n3τ) boolean op-
erations.

As in the proof of Theorem 23, one can select |un− j| = |an− j||1 − (1 + 2−δ) j|, for all j =

1, . . . , n. This implies that the computation of each coefficient of u can be performed with at most
∼

O (n · τ(δ)) =
∼

O (n3 + n2τ) boolean operations. Eventually, we obtain a bound of
∼

O (n4 + n3τ) for
the computation of all coefficients of u, which yields the desired result.

We state now the complexity result for checking the SOS certificates output by Algorithm
univsos2. As for the output of Algorithm univsos1, this is done through evaluation of the
output at n + 1 distinct values where n is the degree of the output.

Theorem 25. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ an upper
bound on the bitsize of the coefficients of f . Then one can check the correctness of the weighted

SOS decomposition of f obtained with Algorithm univsos2 using
∼

O (n4 + n3τ) bit operations.
18

Proof. From [8, Corollary 8.27], the cost of multiplying polynomials in Z[X] of degree less than

n with coefficients of bitsize less than l is bounded by
∼

O (n · l). By Theorem 23, the maximal co-
efficient bitsize of the SOS decomposition of f obtained with Algorithm univsos2 is bounded
from above by l = O (n3 + n2τ). Therefore, from [8, Corollary 10.8], the cost of the evalua-

tion of this decomposition at n points can be performed using at most
∼

O (n · (n3 + nτ)) boolean
operations, as claimed.

5. Practical experiments

Now we present experimental results obtained by applying Algorithm univsos1 and Algo-
rithm univsos2, respectively, presented before in Sections 3 and 4. Both algorithms have been
implemented in a tool, called univsos, written in Maple version 16. The interested reader can
find more details about installation and benchmark execution on the dedicated webpage.3 This
tool is integrated into the RAGlib Maple package4. We obtained all results on an Intel Core i7-
5600U CPU (2.60 GHz) with 16Gb of RAM. SOS decomposition (resp. verification) times are
provided after averaging over five (resp., one thousand) runs.

As mentioned in [5, Section 6], the SOS decomposition performed by Algorithm univsos2

has been implemented using the PARI/GP software tool5 and is freely available (see [5]). To
ensure fair comparison, we have rewritten this algorithm in Maple. To compute approximate
complex roots of univariate polynomials, we rely on the PARI/GP procedure polroots through
an interface with our Maple library. We also tried to use the Maple procedure fsolve, but the
polroots routine from Pari/GP yielded significantly better performance for the polynomials
involved in our examples.

The nine polynomial benchmarks presented in Table 1 allow to approximate some given
mathematical functions, considered in [5, Section 6]. Computation and verification of SOS
certificates are a mandatory step required to validate the supremum norm of the difference
between such functions and their respective approximation polynomials on given closed in-
tervals. This boils down to certifying two inequalities of the form ∀x ∈ [b, c], p(x) ≥ 0,
with p ∈ Q[X], b, c ∈ Q and deg p = n. As explained in [5, Section 5.2.5], this latter
problem can be addressed by computing a weighted SOS decomposition of the polynomial
q(Y) := (1 + Y2)n p

(
b+cY2

1+Y2

)
, with either Algorithm univsos1 or Algorithm univsos2. For each

benchmark, we indicate in Table 1 the degree n and the bitsize τ of the input polynomial, the
bitsize τ1 of the weighted SOS decomposition provided by Algorithm univsos1 as well as the
corresponding computation (resp. verification) time t1 (resp. t′1) in milliseconds. Similarly, we
display τ2, t2, t′2 for Algorithm univsos2. The table results show that for all other eight bench-
marks, Algorithm univsos2 yields better certification and verification performance, together
with more concise SOS certificates. This observation confirms what we could expect after com-
paring the theoretical complexity results from Sections 3 and 4.

The five benchmarks from Table 2 are related to problems arising in verification of digital
filters against frequency specifications (see [38, Section III B)]). As for the problems from Ta-
ble 1, computation and verification of SOS certificates are mandatory to show the non-negativity
of a polynomial, which allows one in turn to validate the bounds of a rational function. By

3https://github.com/magronv/univsos
4http://www-polsys.lip6.fr/~safey/RAGLib/
5http://pari.math.u-bordeaux.fr

19

Table 1: Comparison results of output size and performance between Algorithm univsos1 and Algorithm univsos2

for non-negative polynomial benchmarks from [5].

Id n τ (bits) univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
1 13 22 682 3 403 218 2 723 0.40 51 992 824 0.14
3 32 269 958 11 613 480 13 109 1.18 580 335 2 640 0.68
4 22 47 019 1 009 507 4 063 1.45 106 797 1 776 0.31
5 34 117 307 8 205 372 102 207 20.1 265 330 5 204 0.60
6 17 26 438 525 858 1 513 0.74 59 926 1 029 0.21
7 43 67 399 62 680 827 217 424 48.1 152 277 11 190 0.87
8 22 27 581 546 056 1 979 0.77 63 630 1 860 0.38
9 20 30 414 992 076 964 0.44 68 664 1 605 0.25

10 25 42 749 3 146 982 1 100 0.38 98 926 2 753 0.39

Table 2: Comparison results of output size and performance between Algorithm univsos1 and Algorithm univsos2

for non-negative polynomial benchmarks from [38].

Id n τ (bits) univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
A

40

290 265 579 515 1 184 2.27 294 745 7 553 1.14
B 290 369 579 720 1 008 2.25 294 803 7 543 0.99
C 282 964 539 693 428 1.01 589 939 9 080 6.21
D 289 630 552 702 500 1.14 596 604 8 902 0.62
E 279 304 19 389 110 17 024 1.26 604 918 20 161 0.69

contrast with the comparison results from Table 1, Algorithm univsos1 is faster for all exam-
ples. In addition, Algorithm univsos1 produces output certificates of smaller size, compared to
Algorithm univsos2, on the two benchmarks # C and # D. For all three other benchmarks,
Algorithm univsos2 provides more concise certificates. The slower performance of Algo-
rithm univsos2 is due to the time spent to obtain accurate approximations of the polynomial
roots.

The comparison results available in Table 3 are obtained for power sums of increasing de-
grees. For a given natural number n = 2k with 10 ≤ n ≤ 500, we consider the polynomial
Pn := 1 + X + · · ·+ Xn. The roots of this polynomial are the (n + 1)-st roots of unity, thus yielding
the following SOS decomposition with real coefficients: Pn :=

∏k
j=1((X − cos θ j)2 + sin2 θ j),

with θ j := 2 jπ
n+1 , for each j = 1, . . . , k. By contrast with the benchmarks from Table 1, Table 3

shows that Algorithm univsos1 produces output certificates of much smaller size compared to
Algorithm univsos2, with a bitsize ratio lying between 6 and 38 for values of n between 10
and 200. This is due to the fact that Algorithm univsos1 outputs a value of t equal to 0 at each
step. The execution performance of Algorithm univsos1 is also much better in this case. The
lack of efficiency of Algorithm univsos2 is due to the computational bottleneck occurring when
obtaining an accurate approximation of the relatively close roots cos θ j± i sin θ j, j = 1, . . . , k. For
n ≥ 300, the execution of Algorithm univsos2 did not succeed after two hours of computation,
as indicated by the symbol − in the corresponding line.

20

Table 3: Comparison results of output size and performance between Algorithm univsos1 and Algorithm univsos2

for non-negative power sums of increasing degrees.

n
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
10 84 7 0.03 567 264 0.03
20 195 10 0.05 1 598 485 0.06
40 467 26 0.09 6 034 2 622 0.18
60 754 45 0.14 12 326 6 320 0.32
80 1 083 105 0.18 21 230 12 153 0.47
100 1 411 109 0.26 31 823 19 466 0.69
200 3 211 444 0.48 120 831 171 217 2.08
300 5 149 1 218 0.74

− − −
400 7 203 2 402 0.95
500 9 251 4 292 1.19

1000 20 483 30 738 2.56

Further experiments are summarized in Table 4 for modified Wilkinson polynomials Wn of
increasing degrees n = 2k with 10 ≤ n ≤ 600 and Wn := 1 +

∏k
j=1(X − j)2. The roots j = 1, . . . , k

of Wn − 1 are relatively close (i.e.,the difference between two consecutive roots is small by
comparison with the size of the coefficients), which yields again significantly slower performance
of Algorithm univsos2. As observed in the case of power sums, timeout behaviors occur for
n ≥ 60. In addition, the bitsize of the SOS decompositions returned by Algorithm univsos1

are much smaller. This is a consequence of the fact that in this case, a = 1 is the smallest
global minimizer of Wn. Hence the algorithm always terminates at the first iteration by returning
the trivial quadratic approximation ft = fa = 1 together with the square-free decomposition of
Wn − ft =

∏k
j=1(X − j)2.

Table 4: Comparison results of output size and performance between Algorithm univsos1 and Algorithm univsos2

for modified Wilkinson polynomials of increasing degrees.

n τ (bits) univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
10 140 47 17 0.01 2 373 751 0.03
20 737 198 31 0.01 12 652 3 569 0.08
40 3 692 939 35 0.01 65 404 47 022 0.17
60 9 313 2 344 101 0.01

− − −

80 17 833 4 480 216 0.01
100 29 443 7 384 441 0.01
200 137 420 34 389 3 249 0.01
300 335 245 83 859 11 440 0.01
400 628 968 157 303 34 707 0.02
500 1 022 771 255 767 73 522 0.02
600 1 519 908 380 065 149 700 0.04

Finally, we consider experimentation performed on modified Mignotte polynomials defined
21

by Mn,m := Xn + 2(101X − 1)m and Nn := (Xn + 2(101X − 1)2)(Xn + 2((101 + 1
101)X − 1)2),

for even integers n and m ≥ 2. The corresponding results are displayed in Table 5 for Mn,m

with m = 2 and 10 ≤ n ≤ 10000, m = n − 2 and 10 ≤ n ≤ 100 as well as for Nn with
10 ≤ n ≤ 100. Note that similar benchmarks are used in [36] to anayze the efficiency of (real) root
isolation techniques for polynomials with close roots. As for modified Wilkinson polynomials,
Algorithm univsos2 can only handle instances of small size, due to the limited scalability of the
polroots procedure. In this case, Algorithm univsos1 computes the approximation t = 1

100 of
the unique global minimizer of Mn,2. Thus, Algorithm univsos1 always outputs weighted SOS
decompositions of polynomials Mn,2 within a single iteration by first computing the quadratic
polynomial ft = 2(101X − 1)2 and the trivial square-free decomposition Wn − ft = Xn. In the
absence of such minimizers, Algorithm univsos1 can only handle instances of polynomials
Mn,n−2 and Nn with moderate degree (less than 100).

Table 5: Comparison results of output size and performance between Algorithm univsos1 and Algorithm univsos2

for modified Mignotte polynomials of increasing degrees.

Id n τ (bits) univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)

Mn,2

10

27 23

2

0.01

4 958 1 659 0.04
102 3

− − −103 85
104 3 041

Mn,n−2

10 288 25 010 21 0.03 6 079 2 347 0.04
20 1 364 182 544 138 0.04 26 186 10 922 0.06
40 5 936 1 365 585 1 189 0.13

− − −60 13 746 4 502 551 4 966 0.33
100 39 065 20 384 472 38 716 1.66

Nn

10

212

25 567 27 0.04

− − −

20 189 336 87 0.05
40 5 027 377 1 704 0.17
60 16 551 235 8 075 0.84
100 147 717 572 155 458 11.1

6. Conclusion and perspectives

We presented and analyzed two different algorithms, univsos1 and univsos2, to compute
weighted sum of squares (SOS) decompositions of non-negative univariate polynomials. When
the input polynomial has rational coefficients, one feature shared by both algorithms is their
ability to provide non-negativity certificates whose coefficients are also rational. Our study shows
that the complexity analysis of Algorithm univsos1 yields an upper bound that is exponential
w.r.t. the input degree, while the complexity of Algorithm univsos2 is polynomial. However,
comparison benchmarks emphasize the need for both algorithms to handle various classes of non-
negative polynomials, e.g., in the presence of rational global minimizers or when root isolation
can be performed efficiently.

22

A first direction of further research is a variant of Algorithm univsos2 where one would
compute approximate SOS decompositions of perturbed positive polynomials by using semidefi-
nite programming (SDP) instead of root isolation. Preliminary experiments yield very promising
results when the bitsize of the polynomials is small, e.g., for power sums of degree up to 1000.
However, the performance decreases when the bitsize becomes larger, either for polynomial
benchmarks from [5] or modified Wilkinson polynomials. At the moment, we are not able to
provide any SOS decomposition for all such benchmarks. Our SDP-based algorithm relies on
the high-precision solver SDPA-GMP ([28]), but it is still challenging to obtain precise values of
eigenvalues/vectors of SDP output matrices. Another advantage of this technique is its ability to
perform global polynomial optimization. A topic of interest would be to obtain the same feature
with the two current algorithms. We also plan to develop extensions to the non-polynomial case.

References

[1] Basu, S., Pollack, R., Roy, M.-F., 1996. On the combinatorial and algebraic complexity of quantifier elimination.
Journal of the ACM (JACM) 43 (6), 1002–1045.

[2] Basu, S., Pollack, R., Roy, M.-F., 2006. Algorithms in Real Algebraic Geometry (Algorithms and Computation in
Mathematics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[3] Boudaoud, F., Caruso, F., Roy, M.-F., 2008. Certificates of Positivity in the Bernstein Basis. Discrete & Computa-
tional Geometry 39 (4), 639–655.

[4] Cauchy, A. L. B., 1832. Calcul des indices des fonctions. Journal de l’Ecole Polytechnique 15 (25), 176 – 229.
[5] Chevillard, S., Harrison, J., Joldes, M., Lauter, C., 2011. Efficient and accurate computation of upper bounds of ap-

proximation errors. Theoretical Computer Science 412 (16), 1523 – 1543, https://hal.archives-ouvertes.
fr/ensl-00445343v2.

[6] Collins, G. E., 1975. Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Au-
tomata Theory and Formal Languages 2nd GI Conference Kaiserslautern, May 20–23, 1975. Springer, pp. 134–183.

[7] Coq, 2016. The Coq Proof Assistant. http://coq.inria.fr/.
[8] Gathen, J., Gerhard, J., 1999. Modern Computer Algebra. Cambridge University Press, New York, NY, USA.
[9] Girard, A., 1629. Invention nouvelle en l’algébre. Blauew.

[10] Greuet, A., Safey El Din, M., 2014. Probabilistic algorithm for polynomial optimization over a real algebraic set.
SIAM Journal on Optimization 24 (3), 1313–1343.
URL https://doi.org/10.1137/130931308

[11] Guo, Q., Safey El Din, M., Zhi, L., 2013. Computing Rational Solutions of Linear Matrix Inequalities. In: Pro-
ceedings of the 38th International Symposium on Symbolic and Algebraic Computation. ISSAC ’13. ACM, New
York, NY, USA, pp. 197–204.

[12] Hales, T., Adams, M., Bauer, G., Dat, D. T., Harrison, J., Truong, H. L., Kaliszyk, C., Magron, V., Mclaughlin,
S., Thang, N. T., Truong, N. Q., Nipkow, T., Obua, S., Pleso, J., Rute, J., Solovyev, A., An, T. T. H., Trung, T. N.,
Diep, T. T., Urban, J., Ky, V. K., Zumkeller, R., 2015. A Formal Proof of the Kepler Conjecture. Submitted.

[13] Harrison, J., 1996. HOL Light: A Tutorial Introduction. In: Srivas, M. K., Camilleri, A. J. (Eds.), FMCAD. Vol.
1166 of Lecture Notes in Computer Science. Springer, pp. 265–269.

[14] Henrion, D., Naldi, S., Din, M. S. E., 2016. Exact Algorithms for Linear Matrix Inequalities. SIAM Journal on
Optimization 26 (4), 2512–2539.

[15] Henrion, D., Naldi, S., Safey El Din, M., 2016. Spectra-a maple library for solving linear matrix inequalities in
exact arithmetic. arXiv preprint arXiv:1611.01947.

[16] Higham, N., 2002. Accuracy and Stability of Numerical Algorithms: Second Edition. SIAM.
[17] Hong, H., Safey El Din, M., 2012. Variant quantifier elimination. Journal of Symbolic Computation 47 (7), 883–

901.
[18] Harrison, J., 2007. Verifying Nonlinear Real Formulas via Sums of Squares. In: Proceedings of the 20th Interna-

tional Conference on Theorem Proving in Higher Order Logics. TPHOLs’07. Springer-Verlag, Berlin, Heidelberg,
pp. 102–118.

[19] Kaltofen, E. L., Li, B., Yang, Z., Zhi, L., 2012. Exact certification in global polynomial optimization via sums-of-
squares of rational functions with rational coefficients. Journal of Symbolic Computation 47 (1), 1 – 15.

[20] Knapp, A. W., 2006. Basic Algebra, 1st Edition. Birkhäuser Basel.
[21] Landau, E., 1906. ber die darstellung definiter funktionen durch quadrate. Mathematische Annalen 62, 272–285.

URL http://eudml.org/doc/158257

23

[22] Lasserre, J.-B., 2001. Global optimization with polynomials and the problem of moments. SIAM Journal on Opti-
mization 11 (3), 796–817.

[23] Lickteig, T., Roy, M.-F., 2001. Sylvesterhabicht sequences and fast cauchy index computation. Journal of Symbolic
Computation 31 (3), 315 – 341.

[24] Magron, V., Allamigeon, X., Gaubert, S., Werner, B., 2015. Formal proofs for Nonlinear Optimization. Journal of
Formalized Reasoning 8 (1), 1–24.

[25] Mehlhorn, K., Sagraloff, M., Wang, P., Jan. 2015. From Approximate Factorization to Root Isolation with Appli-
cation to Cylindrical Algebraic Decomposition. J. Symb. Comput. 66, 34–69.

[26] Melczer, S., Salvy, B., 2016. Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables. In: Pro-
ceedings of the ACM on International Symposium on Symbolic and Algebraic Computation. ISSAC ’16. ACM,
New York, NY, USA, pp. 333–340.
URL http://doi.acm.org/10.1145/2930889.2930913

[27] Mignotte, M., 1992. Mathematics for Computer Algebra. Springer-Verlag New York, Inc., New York, NY, USA.
[28] Nakata, M., Sept 2010. A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefi-

nite programming solver: SDPA-GMP, -QD and -DD. In: Computer-Aided Control System Design (CACSD), 2010
IEEE International Symposium on. pp. 29–34.

[29] Parrilo, P., 2000. Structured semidefinite programs and semialgebraic geometry methods in robustness and opti-
mization. Ph.D. thesis, California Institute of Technology.

[30] Peyrl, H., Parrilo, P., 2008. Computing sum of squares decompositions with rational coefficients. Theor. Comput.
Sci. 409 (2), 269–281.

[31] Pourchet, Y., 1971. Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de
nombres algébriques. Acta Arithmetica 19 (1), 89–104.
URL http://eudml.org/doc/205020

[32] Prestel, A., Delzell, C., 2001. Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra. Springer Mono-
graphs in Mathematics. Springer Berlin Heidelberg.
URL https://books.google.fr/books?id=29grNpTVWX8C

[33] Rantzer, A., Parrilo, P. A., 2000. On convexity in stabilization of nonlinear systems. In: Proceedings of the 39th
IEEE Conference on Decision and Control. Vol. 3. pp. 2942–2945.

[34] Safey El Din, M., Zhi, L., 2010. Computing rational points in convex semialgebraic sets and sum of squares
decompositions. SIAM Journal on Optimization 20 (6), 2876–2889.

[35] Schweighofer, M., 1999. Algorithmische Beweise für Nichtnegativ- und Positivstellensätze. Master’s thesis, Diplo-
marbeit an der Universität Passau.

[36] Strzebonski, A., Tsigaridas, E., 2011. Univariate Real Root Isolation in an Extension Field. In: Proceedings of the
36th International Symposium on Symbolic and Algebraic Computation. ISSAC ’11. ACM, New York, NY, USA,
pp. 321–328.
URL http://doi.acm.org/10.1145/1993886.1993934

[37] Swokowski, W., 1989, pages 216 - 221. Fundamentals of College Algebra. PWS-Kent Pub. Co.
[38] Volkova, A., Lauter, C., Hilaire, T., 2017. Reliable verification of digital implemented filters against frequency

specifications. In: 24th IEEE Symposium on Computer Arithmetic. IEEE.
[39] Yun, D. Y., 1976. On Square-free Decomposition Algorithms. In: Proceedings of the Third ACM Symposium on

Symbolic and Algebraic Computation. SYMSAC ’76. ACM, New York, NY, USA, pp. 26–35.
URL http://doi.acm.org/10.1145/800205.806320

24

