
University of Konstanz Alexander Taveira Blomenhofer
Department of Mathematics and Statistics Markus Schweighofer
Summer Term 2019

Polynomial Optimization – Computer Project 1

The aim of this project is to solve the polynomial optimization problem

(P) minimize 2x4
1 + 10x3

1 + x2
1x2 + 19x2

1 − x1x2
2 + 4x1x2+

14x1 + 2x4
2 − 10x3

2 + 19x2
2 − 14x2 + 11

over x1, x2 ∈ R

subject to x2
1 + 3x1 − x2

2 + x2 + 3 ≥ 0

x2
1 + 2x1 − x2

2 + 2x2 + 1 ≥ 0

x3
1 + 3x2

1 + 2x1 − x3
2 + 3x2

2 − 2x2 ≥ 0

using semidefinite programming. You will need a working version of the commercial
system MATLAB1 including the Symbolic Math Toolbox MuPAD2 (e.g., a license from
the state-wide MATLAB agreement3 or the version installed in the public PhyMa com-
puter lab4). You need to have installed5 the following MATLAB-packages (cf. Problem
Set 1): the modeling language YALMIP6 and the SDP solver MOSEK7 or any other SDP
solver supported by YALMIP8 (CSDP, DSDP, LOGDETPPA, PENLAB, SDPA, SDPLR,
SDPT3, SDPNAL, SEDUMI, PENSDP).

In this project, you have to construct four files where narendra9 must be replaced by
your given name in lowercase letters:

(1) a MuPAD notebook pop1narendra.mn

(2) a MuPAD program pop1narendra.mu

(3) a MATLAB script pop1narendra_constraints.m

(4) a MATLAB script pop1narendra.m

1http://en.wikipedia.org/wiki/MATLAB
2http://en.wikipedia.org/wiki/MuPAD
3https://www.kim.uni-konstanz.de/services/software-und-hardware/matlab/
4http://springfield.phyma.uni-konstanz.de
5and added to the MATLAB path
6https://yalmip.github.io
7https://www.mosek.com/products/academic-licenses/
8https://yalmip.github.io/allsolvers/
9http://en.wikipedia.org/wiki/Karmarkar%27s_algorithm

http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/MuPAD
https://www.kim.uni-konstanz.de/services/software-und-hardware/matlab/
http://springfield.phyma.uni-konstanz.de
https://yalmip.github.io
https://www.mosek.com/products/academic-licenses/
https://yalmip.github.io/allsolvers/
http://en.wikipedia.org/wiki/Karmarkar%27s_algorithm

You will first create (1) following our instructions. This will be your potentially first
MuPAD notebook where you can take your first steps with the very nice and elegant
MuPAD language. In the end (1) should be a readable MuPAD notebook that creates
the constraints of a semidefinite program (P1) relaxing (P) and writes them in YALMIP
format to the file (3). In other words, file (3) will be created automatically once your
MuPAD notebook works correctly and is evaluated. MuPAD notebooks can only be
opened but cannot be called from MATLAB scripts. What we finally need is therefore
a MuPAD program. So you will create file (2) by just copying all essential commands
from (1) into (2). The “master” file (4) will therefore first execute (2) which produces
a semidefinite relaxation (P1) of (P) and writes it into (3), then (4) will execute (3) to
define the constraints in the YALMIP format, and finally (3) will tell YALMIP to solve
(P1) using an SDP-solver.

(a) Start MATLAB and add YALMIP and MOSEK or another SDP solver to the MAT-
LAB path.

(b) Set the working directory (“Current Folder”) to the folder where you want to store
your project in (using cd).10

(c) Create a blank MuPAD notebook by typing mupad in the MATLAB command win-
dow (if MATLAB suggests to create a „Live Script“ instead then insist on crea-
ting a MuPAD notebook), put a comment with your name in the first line of
this notebook. Save the notebook in your working directory under the name of
pop1narendra.mn.

(d) Open MATLAB’s or MuPAD’s help window and take a tour through the topics

• Symbolic Math Toolbox→ MuPAD→ Getting Started with MuPAD

• Symbolic Math Toolbox→ MuPAD→ MuPAD Language Fundamentals

• Symbolic Math Toolbox→ MuPAD→ Mathematics→ Linear Algebra

while experimenting in the notebook. Also search on the internet for learning
about lists, sequences and functions (in particular the arrow operator) in MuPAD.

(e) Now search in the help browser for the commands _assign, _equal, _seqgen,
_plus, map, expand, monomials, lterm, op, nops, matrix, transpose, max, degree,
contains, subs and whatever other command you are interested in. If there are
two many search results then define for example „Symbolic Math Toolbox“ as a
filter.

(f) Define the goal function f of (P) and the three polynomials p[1], p[2] and p[3]
defining the constraints of (P).

(g) Define a function mon (using the arrow operator ->) that yields a sequence of all
monomials of degree exactly k when called with a nonnegative integer k.

10Attention: You should do this before you call MuPAD for the first time during your MATLAB session.
Otherwise MuPAD might not notice that you have changed the current directory.

(h) Define a function vec yielding a column vector of all monomials of degree at most
k when called with a nonnegative integer k.

(i) Define symmetric matrix polynomials P0 ∈ SR[X1, X2]6×6, P1 ∈ SR[X1, X2]3×3,
P2 ∈ SR[X1, X2]3×3 and P3 ∈ SR[X1, X2]1×1 whose positive semidefiniteness ex-
presses the validity of the (mostly redundant) constraints

(a1 + a2x1 + a3x2 + a4x2
1 + a5x1x2 + a6x2

2)
2 ≥ 0

(a1 + a2x1 + a3x2)
2(x2

1 + 3x1 − x2
2 + x2 + 3) ≥ 0

(a1 + a2x1 + a3x2)
2(x2

1 + 2x1 − x2
2 + 2x2 + 1) ≥ 0

a2
1(x3

1 + 3x2
1 + 2x1 − x3

2 + 3x2
2 − 2x2) ≥ 0,

(a1, . . . , a6 ∈ R) confer the lecture and Exercise Sheet 1.

(j) Define the list of monomials from R[X1, X2] appearing somewhere now and ano-
ther list of the same length s of variables yi = y[i] (i ∈ {1, . . . , s}).

(k) Define a function that linearizes polynomials (cf. Problem Set 1 and the lecture)
from R[X1, X2] in the sense that it replaces the i-th monomial in our list by the
corresponding yi (except for the constant monomial 1). Use the map function to do
this.

(l) Again using the map function, extend this linearization to matrix polynomials.

(m) Store the linearized goal function f in l and the linearized matrix polynomials
P0, . . . , P3 in M0,. . . ,M3.

(n) Add and understand the following lines to your notebook:

use(generate,MATLAB) // load MATLAB function form library generate
MATLAB(l)
MATLAB(M0)
yalmipspec:="y=sdpvar(".nops(monolist).",1); ":
yalmipspec:=yalmipspec.MATLAB(l).MATLAB(M0).MATLAB(M1).MATLAB(M2).MATLAB(M3):
yalmipspec:=stringlib::subs(yalmipspec,"t0"="l"):
yalmipspec:=stringlib::subs(yalmipspec,"zeros"="sdpvar"):
fprint(Unquoted,Text,"pop1narendra_constraints.m", yalmipspec)

(o) Create (2) with your favorite editor. Copy and paste everything from (1) which is
really needed to fulfill the task of producing (3). Do not copy the things which are
nice in a notebook to understand what is going on (like examples). This helps us
to see if you have understood what is really necessary. Be careful that you have to
slightly adapt your syntax to a program file, e.g. you always have to separate two
commands by a semicolon.

(p) Create (4) with your favorite editor and write the following into this file while try-
ing to understand it using the MATLAB help and the list of YALMIP commands11.

11https://yalmip.github.io/allcommands

https://yalmip.github.io/allcommands

% Narendra Karmarkar
read(symengine,’pop1narendra.mu’)
pop1narendra_constraints
constraints=[M0>=0,M1>=0,M2>=0,M3>=0]
optimize(constraints,l)
value(l)
value(y(2))
value(y(3))
evalin(symengine,’subs(f,x[1]=-1,x[2]=1)’)

(q) Type pop1narendra in the MATLAB command window! Why can you conclude
that the SDP-relaxation (P1) has solved (at least up to numerical errors) the POP
(P)?

Due by Tuesday, May 8th, 2019, 11:00 am. The four files (1), (2), (3) and (4) must be
sent attached to an electronic mail to Alexander Taveira Blomenhofer12. Files (1), (2)
and (4) must be executable without producing errors. Note that this must work in any
directory so please avoid using pathnames when specifying filenames. File (3) must be
identical with both the file that is produced by executing (1) and (2), respectively. It is
perfectly allowed to collaborate with other students. However, the finalization, annota-
tion and submission of the project has to be done by each participant individually. The
only file which must be well documented is (1). The other files need not necessarily
contain comments. Comments should be short but pregnant and in English language.
In files (1), (2) and (4) you must specify your name by a comment which is of the form
// Narandra Karmarkar and % Narandra Karmarkar, respectively.

Where it is little effort, you should keep the code sufficiently general so that it can
be easily adapted for future projects, e.g., you should use n instead of 2 by including
a line like

n:=2 // number of variables

in (1) to allow for later increase of the number of variables. Also you are encouraged
to put redundant “pedagogical” code which motivates or explains subsequent more
sophisticated code even if it is not necessary for carrying out the project. For example,
you could add the line

x[i]$i=1..n // the variables

which is just there to increase the readability.
Your project submissions will usually not be discussed during the exercise groups

but individually in the office of the tutor. You have to be able to explain your code.

12http://www.math.uni-konstanz.de/~blomenhofer/

http://www.math.uni-konstanz.de/~blomenhofer/

